

# ExxV3 Development Board Instruction Manual (For E8V3, E16V3, E24V3)

## 1. Overview

The ExxV3 is a high-performance development board designed for industrial automation and remote control applications. It features 8-24 input channels, 8-24 high-current relay output channels (according to your board model), and supports MODBUS RTU communication protocol, providing flexible and reliable control solutions for various scenarios.

## 2. Key Specifications

| Feature                | Details                                                            |
|------------------------|--------------------------------------------------------------------|
| Input Channels         | 8-24 channels, compatible with 12-24V PNP/NPN wiring modes         |
| Output Channels        | 8-24 channels, 16A high-current barrier-type relays                |
| Communication Protocol | MODBUS RTU (supports 01, 05, 0F commands for remote I/O operation) |
| Address Setting        | 4 DIP switches (3 for SLAVE ID, 1 for control mode selection)      |
| Default Baud Rate      | 38400 bps, 8 data bits, No parity, 1 stop bit (8, N, 1)            |
| Reset Function         | Long-press RST button for 5 seconds to restore factory settings    |

## 3. Input Interface (8-24 Channels according to your board model)

### 3.1 Compatibility

The input channels support both **PNP** and **NPN** wiring modes, with a working voltage range of 12V–24V DC. This compatibility allows the board to connect with various types of sensors, switches, or other signal sources in industrial systems.

### 3.2 Wiring Notes

- Ensure the input voltage matches the 12-24V DC range to avoid damaging the board.
- Use shielded wires for input connections to reduce electromagnetic interference (EMI) in noisy industrial environments.

## 4. Output Interface (8-24 Channels according to your board model)

### 4.1 Relay Specifications

Each of the output channels is equipped with a **16A high-current barrier-type relay**, suitable for driving high-power loads such as motors, pumps, valves, or lighting systems. The barrier-type design ensures secure wiring and prevents accidental short circuits.

### 4.2 Control Modes

The output control mode is determined by the 4th DIP switch (see Section 5 for DIP switch settings):

- **Local Control Mode:** When the 4th DIP switch is set to "OFF", the output terminals are controlled by the input terminals directly.
- **Remote I/O Mode:** When the 4th DIP switch is set to "ON", the entire output terminals work as remote I/O, controlled via the MODBUS RTU protocol.

## 5. DIP Switch Settings

The board is equipped with 4 DIP switches (labeled SW1–SW4) for configuring SLAVE ID and control mode.

### 5.1 Control Mode (4th DIP Switch)

| 4th DIP Switch State | Control Mode       | Description                                                          |
|----------------------|--------------------|----------------------------------------------------------------------|
| OFF                  | Local Control      | Outputs are controlled by the input terminals                        |
| ON                   | Remote I/O Control | Outputs are controlled via MODBUS RTU (supports 01, 05, 0F commands) |

## 5.2 SLAVE ID Configuration (1st-3rd DIP Switches: A0, A1, A2)

The 1st-3rd DIP switches (A0, A1, A2) are used to set the MODBUS RTU SLAVE ID. The SLAVE ID calculation follows this rule:

$$\text{SLAVE ID} = (\text{Binary value of A0, A1, A2}) + 10$$

Notes:

- If no DIP switches (A0-A2) are toggled (all OFF), the **default SLAVE ID is 1** (only when the 4th DIP switch is NOT set to ON).
- When the 4th DIP switch is set to ON, the SLAVE ID is determined by A0-A2 (calculated as above), and the default ID (1) is not applied.

SLAVE ID Calculation Examples:

| A0 (1st Switch) | A1 (2nd Switch) | A2 (3rd Switch) | Binary Value | SLAVE ID (Binary + 10) |
|-----------------|-----------------|-----------------|--------------|------------------------|
| ON              | OFF             | OFF             | 001          | 1 + 10 = 11            |
| OFF             | ON              | OFF             | 010          | 2 + 10 = 12            |
| ON              | ON              | OFF             | 011          | 3 + 10 = 13            |
| ON              | OFF             | ON              | 101          | 5 + 10 = 15            |

## 6. MODBUS RTU Communication

## 6.1 Default Communication Parameters

| Parameter | Default Setting |
|-----------|-----------------|
| Baud Rate | 38400 bps       |
| Data Bits | 8               |
| Parity    | No (N)          |
| Stop Bits | 1               |

## 6.2 Supported Commands

The board supports the following MODBUS RTU commands for remote I/O control (when in Remote I/O Mode , Registers address from 0-15):

- **01 Command:** Read Coils Status (check the state of output relays)
- **05 Command:** Force Single Coil (control a single output relay ON/OFF)
- **0F Command:** Force Multiple Coils (control multiple output relays ON/OFF simultaneously)

### DEMO FRAME :6.2 Supported Commands (Example for E16V3)

The board supports the following MODBUS RTU commands for remote I/O control (when in Remote I/O Mode). Below are **command frame examples** and corresponding response frames, using **SLAVE ID = 1** (consistent with the default SLAVE ID when no DIP switches (A0-A2) are toggled and the 4th DIP switch is set to ON for Remote I/O Mode).

All frames follow the standard MODBUS RTU structure:

[SLAVE ID] + [Function Code] + [Data Segment] + [CRC Check (2 bytes, little-endian)]

#### 6.2.1 01 Command: Read Coils Status

**Purpose:** Read the ON/OFF status of specified output relays (coils). The ExxV3 maps output channels to Coil Addresses 1 - (8~24) (1-based) or 0 -

(7^23) (0-based, note: MODBUS RTU typically uses 1-based addressing for coils in user interactions).

Example: Read status of all 16 output relays (Coil 0001 - 0016 for E16V3)

- **Request Frame (hexadecimal):**

01 01 00 00 00 10 3D 0A

| Field                  | Hex Value | Description                                                                |
|------------------------|-----------|----------------------------------------------------------------------------|
| Slave ID               | 01        | Target device address (set to 1 in this example)                           |
| Function Code          | 01        | Read Coils Status command code                                             |
| Starting Address (Hi)  | 00        | High byte of the starting coil address (0001 in 1-based = 0000 in 0-based) |
| Starting Address (Lo)  | 00        | Low byte of the starting coil address                                      |
| Quantity of Coils (Hi) | 00        | High byte of the number of coils to read (16 coils total)                  |
| Quantity of Coils (Lo) | 10        | Low byte of the number of coils to read ( $10_{16} = 16_{10}$ )            |
| CRC Check (Lo)         | 3D        | Low byte of CRC-16 checksum (calculated for the entire frame)              |
| CRC Check (Hi)         | 0A        | High byte of CRC-16 checksum                                               |

- **Response Frame (hexadecimal, example: Coils 0001=ON, 0002=OFF, ..., 0016=ON):**

01 01 02 01 80 B8 3A

| Field | Hex Value | Description |
|-------|-----------|-------------|
|       |           |             |

|                |    |                                                                                                           |
|----------------|----|-----------------------------------------------------------------------------------------------------------|
| Slave ID       | 01 | Responding device address (matches the request's Slave ID)                                                |
| Function Code  | 01 | Echo of the request's function code (confirms command type)                                               |
| Byte Count     | 02 | Number of data bytes following (16 coils = 2 bytes: 16 bits / 8 bits/byte)                                |
| Data Byte 1    | 01 | Status of Coils 0001 - 0008 (bit 0=Coil0001, bit7=Coil0008; $01_{16}=00000001_2 \rightarrow$ Coil0001=ON) |
| Data Byte 2    | 80 | Status of Coils 0009 - 0016 (bit0=Coil0009, bit7=Coil0016; $80_{16}=10000000_2 \rightarrow$ Coil0016=ON)  |
| CRC Check (Lo) | B8 | Low byte of CRC-16 checksum                                                                               |
| CRC Check (Hi) | 3A | High byte of CRC-16 checksum                                                                              |

### 6.2.2 05 Command: Force Single Coil

**Purpose:** Control the ON/OFF state of a single output relay (coil).

**Example 1:** Turn ON Output Relay 0005 (Coil 0005 = ON)

- **Request Frame (hexadecimal):**

01 05 00 04 FF 00 8C 3A

| Field | Hex Value | Description |
|-------|-----------|-------------|
|       |           |             |

|                   |    |                                                                          |
|-------------------|----|--------------------------------------------------------------------------|
| Slave ID          | 01 | Target device address                                                    |
| Function Code     | 05 | Force Single Coil command code                                           |
| Coil Address (Hi) | 00 | High byte of the target coil address (0005 in 1-based = 0004 in 0-based) |
| Coil Address (Lo) | 04 | Low byte of the target coil address                                      |
| Coil State (Hi)   | FF | High byte for "ON" state (standard MODBUS: FF00 = ON, 0000 = OFF)        |
| Coil State (Lo)   | 00 | Low byte for "ON" state                                                  |
| CRC Check (Lo)    | 8C | Low byte of CRC-16 checksum                                              |
| CRC Check (Hi)    | 3A | High byte of CRC-16 checksum                                             |

- **Response Frame (hexadecimal):**

01 05 00 04 FF 00 8C 3A

*Note: For 05 command, the response frame is identical to the request frame (confirms the command was received and executed).*

**Example 2: Turn OFF Output Relay 0005 (Coil 0005 = OFF)**

- **Request Frame (hexadecimal):**

01 05 00 04 00 00 CD CA

| Field           | Hex Value | Description               |
|-----------------|-----------|---------------------------|
| Coil State (Hi) | 00        | High byte for "OFF" state |
| Coil State (Lo) | 00        | Low byte for "OFF" state  |

|                |    |                              |
|----------------|----|------------------------------|
| CRC Check (Lo) | CD | Low byte of CRC-16 checksum  |
| CRC Check (Hi) | CA | High byte of CRC-16 checksum |

- **Response Frame (hexadecimal):**

01 05 00 04 00 00 CD CA

*Identical to the request frame (confirms OFF command execution).*

### 6.2.3 0F Command: Force Multiple Coils

**Purpose:** Control the ON/OFF state of multiple output relays (coils) in a single command.

**Example:** Turn ON Coils 0002, 0004, 0007 and OFF all other coils (Coils 0001 - 0008)

- **Request Frame (hexadecimal):**

01 0F 00 00 00 08 01 2A 4C 07

| Field                  | Hex Value | Description                                                                  |
|------------------------|-----------|------------------------------------------------------------------------------|
| Slave ID               | 01        | Target device address                                                        |
| Function Code          | 0F        | Force Multiple Coils command code                                            |
| Starting Address (Hi)  | 00        | High byte of starting coil address (0001 in 1-based = 0000 in 0-based)       |
| Starting Address (Lo)  | 00        | Low byte of starting coil address                                            |
| Quantity of Coils (Hi) | 00        | High byte of number of coils to control (8 coils total)                      |
| Quantity of Coils (Lo) | 08        | Low byte of number of coils to control (08 <sub>16</sub> = 8 <sub>10</sub> ) |

|                |    |                                                                                                     |
|----------------|----|-----------------------------------------------------------------------------------------------------|
| Byte Count     | 01 | Number of data bytes (8 coils = 1 byte)                                                             |
| Data Byte      | 2A | Coil states (2A <sub>16</sub> = 00101010 <sub>2</sub> → bits 1, 3, 6=1 → Coils 0002, 0004, 0007=ON) |
| CRC Check (Lo) | 4C | Low byte of CRC-16 checksum                                                                         |
| CRC Check (Hi) | 07 | High byte of CRC-16 checksum                                                                        |

- **Response Frame (hexadecimal):**

01 0F 00 00 00 08 4C 07

| Field                        | Hex Value | Description                              |
|------------------------------|-----------|------------------------------------------|
| Slave ID                     | 01        | Responding device address                |
| Function Code                | 0F        | Echo of request function code            |
| Starting Address (Hi)        | 00        | Echo of request's starting address (Hi)  |
| Starting Address (Lo)        | 00        | Echo of request's starting address (Lo)  |
| Quantity of Coils (Hi)       | 00        | Echo of request's quantity of coils (Hi) |
| Quantity of Coils (Lo)       | 08        | Echo of request's quantity of coils (Lo) |
| CRC Check (Lo)               | 4C        | Low byte of CRC-16 checksum              |
| CRC Check (Hi)               | 07        | High byte of CRC-16 checksum             |
| <i>The response confirms</i> |           |                                          |

|                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <i>the number of coils controlled and the starting address, but not the individual coil states (use 01 command to verify states).</i> |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|--|

## 7. Factory Reset

If you forget the communication parameters (e.g., baud rate) or SLAVE ID settings, you can restore the board to its **factory default settings** by:

1. Ensuring the board is powered on.
1. Long-pressing the **RST** button for 5 seconds.
1. Releasing the RST button; the board will reboot with default settings (baud rate: 38400, 8,N,1; SLAVE ID: 1 if no DIP switches are toggled).

## 8. Installation & Wiring Precautions

1. **Power Supply:** Use a stable 12-24V DC power supply that matches the board's input requirements. Avoid overvoltage to prevent component damage.
1. **Relay Loads:** Do not exceed the 16A current rating of each relay. For inductive loads (e.g., motors), add a surge protector to extend relay life.
1. **Grounding:** Ensure proper grounding of the board to reduce EMI and improve signal stability.
1. **Wiring:** Use appropriate wire gauges (recommended: 16-22 AWG for inputs, 10-14 AWG for high-current outputs) and secure connections with the barrier terminals.

## 9. how to change baud rate:

step1: modbus 06 command write address 2 (data:0-4 0: 4800, 1: 9600, 2: 19200, 3: 38400, 4: 57600)

step2: modbus 05 command write address 501 = true will save the config.

step3: power off->on of board.

if forget the setting. hold on the "RESET" button > 3 seconds, it will auto set to default setting with 38400bps.